
MATHEMATICS OF COMPUTATION 
VOLUME 57, NUMBER 195 
JULY 1991, PAGES 1-21 

CONVERGENCE ESTIMATES FOR PRODUCT ITERATIVE METHODS 
WITH APPLICATIONS TO DOMAIN DECOMPOSITION 

JAMES H. BRAMBLE, JOSEPH E. PASCIAK, JUNPING WANG, AND JINCHAO XU 

ABSTRACT. In this paper, we consider iterative methods for the solution of sym- 
metric positive definite problems on a space % which are defined in terms of 
products of operators defined with respect to a number of subspaces. The sim- 
plest algorithm of this sort has an error-reducing operator which is the product 
of orthogonal projections onto the complement of the subspaces. New norm- 
reduction estimates for these iterative techniques will be presented in an abstract 
setting. Applications are given for overlapping Schwarz algorithms with many 
subregions for finite element approximation of second-order elliptic problems. 

1. INTRODUCTION 

In this paper, we shall be concerned with solving problems in an abstract 
Hilbert space 77 with inner product A(., .). Denote by 77' the dual of the 
Hilbert space 77 with (x, *) being the action of x E 77' on 77. Given a 
function f E 77', we seek the solution u E 77 of the equation 

(1.1) A(u, 0) = (f, 0) for all 0 E F. 

We will consider iterative methods for (1. 1) based on a sequence of subspaces. 
To this end, let %', .... , %"^ denote closed subspaces of 77 and define A1/: %$ 
7' by 

(Aiv, q) = A(v, q) for all v, 0 E 7<. 
Denote by A the corresponding operator defined on the whole space 77. Thus, 
the problem (1.1) is equivalent to the problem of finding u E 77 such that 

(1.2) Au=f. 
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We assume that linear operators R1 %'' -* %1' for i = 1, ..., J are given. In 
practice, the operator Ri will in some sense "approximately invert" Ai. We 
will consider iterative methods of the following type for solving (1. 1). 

Algorithm 1. Given ul E X, an approximation to the solution u of (1.2), 
we define the next iterate u+1 E %" as follows: 

(1) Set Y0 = u 
(2) For i= 1, ...,J define Yi by 

Y, = Yi_1 + RiQi( - AYil) 

where Qi denotes the projection onto the subspace <' defined by 

(x-QiXq0)=O forallqoE%'. 

(3) Set u1+1 = YJ . 

Let e0 = U- UI and e =u - Yi for i = 1, ...,J. Let Pi denote the 
orthogonal projection into the subspace %', i.e., Piv = w where w is the 
unique function in %$ satisfying 

A(w, 0) = A(vq$) for all 0 E '. 

A simple computation shows that QiA = AiPi and hence ei = (I -RiAiPi)ei11 . 
Consequently, 

(1.3) u - u1+1 = (I - Tj)(I - Tj_1) . (I - T1)(u - u 

where Ti = RiAiPi . Thus, estimates for the rate of convergence for the iterative 
method follow directly from norm bounds on the product in (1.3). The purpose 
of this paper is to provide new techniques for estimating norms of products of 
operators of the form appearing on the right-hand side of (1.3). 

One natural example of a choice of Ri is R1 = A-'. In this case the above 
product reduces to a product of orthogonal projections onto the complements 
of the subspaces. Note, however, that the action of the inverse of Ai must be 
computed as part of the iterative procedure. For this reason, it is often more 
efficient to use various preconditioners for Ai. This will be clearly illustrated 
in the applications to be presented. 

The most important application of the results of this paper is to the computa- 
tion of the solutions of the discrete equations which result from the numerical 
approximation of elliptic boundary value problems. In the case of finite ele- 
ment approximation, the inner product A(., *) is the form corresponding to 
the differential operator and %"r is the finite element approximation space. The 
subspaces J'? are either associated with subdomains in domain decomposition 
applications or coarser grids in multilevel applications. We shall discuss pri- 
marily the applications to domain decomposition in this paper, even though the 
theorems of this paper could be directly applied to provide new estimates for 
multigrid algorithms. However, it is possible to modify the analysis presented 
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here and develop sharper estimates for multigrid algorithms. This is done in 
[10] and provides a theory for multigrid algorithms which does not require 
regularity estimates for the underlying boundary value problem. 

Iterative algorithms involving a product of projectors have been studied by 
other researchers (cf. [ 1 5], [17], [19]). The case of two subspaces has been thor- 
oughly understood (cf. [15], [16]). The results for greater than two projectors 
only gave either that the methods were convergent (without any estimate on the 
rate of convergence [15]) or provided a convergence rate which approached 1 
faster than exponentially with the number of projectors [17], [19]. Our analysis 
provides much better bounds for the convergence rate of these methods. In 
fact, there are applications where our analysis shows that the convergence rate 
remains bounded away from one even though the number of projectors becomes 
large (cf. ?4). 

Another important aspect of our analysis is that it shows that the projectors 
can be replaced by properly scaled preconditioners without significant deterio- 
ration in the convergence rates. Our result applies to the many-level case and 
to other applications as well. 

The paper is organized in the following way. We will provide an abstract 
analysis for estimating the norms of operators of the form of (1.3) in ?2. In ?3, 
we provide estimates for the sum of projectors and define the additive variant of 
Algorithm 1. In ?4, we apply the abstract results of ?2 to the multiplicative iter- 
ative methods resulting from overlapping domain decomposition. The methods 
discussed there are extensions of the classical Schwarz alternating algorithm. 
Finally, the results of numerical experiments illustrating the rapid convergence 
of the product algorithms will be given in ?5. 

2. ABSTRACT ANALYSIS OF PRODUCT ALGORITHMS 

In this section, we shall present an abstract analysis of products of operators 
of the form appearing in (1.3). To this end, we assume that we are given a 
Hilbert space %"r with inner product (. ,) and a sequence of linear operators 
{Ti} mapping %"F into %"r for i = 1, ... , J which are selfadjoint, positive 
semidefinite and of norm bounded by a constant w < 2. The main results of 
this section are Theorems 2.1 and 2.2, which give explicit bounds for the norm 
of the product operator in (1.3) in terms of a number of assumptions to be 
described. 

To begin our analysis, let 

(2.1) Ei = (I - TXI- T-1) (I- TO 

for i = 1, ..., J. For convenience, we let E = I, the identity operator on 
X"', and E = EJ . We clearly have for i = 1, ..., J 

(2.2) Ei11 - Ei = TiEi-E 
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from which it follows that 

(2.3) I-fEi= ETJEJ . 
j=1 

The following lemma will be a fundamental part of the analysis of this section. 

Lemma 2.1. Let Ti and E, i = 1, ,J . be as above. Then 

J 

(2.4) (2 - w) (TJjEjv, Ei_lv) < ?1v 112 _ IIEv 112- 

i=1 

where 1 - 1 = (. 1 /2 

Proof. It is obvious from (2.2) that 

(2.5) IIEivHI2 -_IIEiVI = II TjEjjv 2 + 2(TjEjjv, Ev). 

We note that 

(TfEI v Eiv) = (T(I - Tj)E_ Iv, EI v), 

and hence the right-hand side of (2.5) can be bounded by 

(2.6) 11Tj - Ei_, v12 + 2(T1Ejjv, Eiv) = ((2I- Ti)TiEil v, Ejjv) 
> (2 - w)(TfEi Iv, E-I v). 

Combining (2.5), (2.6) and summing gives (2.4). This completes the proof of 
the lemma. E 

A fundamental assumption for the analysis to be presented in this section 
involves an inequality regarding the sum of the operators { T} I. Specifically, we 
assume that there is a positive constant C0 satisfying 

J 

(2.7) 11v l2 < C0 (T v, v) for all v E ". 
i=l 

We can now state and prove the first theorem of this section. 

Theorem 2.1. Assume that (2.7) holds. Then 

(2.8) IIEv12 < y IV 

for 

(2.9) y 1-- 
CO(J + w)2J(J - 1)/2) 

or 

(2.10) 2' = 1 - 2C0(1 + w2J(J - 1)/2) 

Proof. We note that it clearly suffices to prove that for v E %"' 

<lv ? Co(J + ) J(J - 1)/2)/(2 - W)(llvll2 - IIE 112 
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and 
I1vil < 2CO(l + a J(J - 1)/2)/(2 - w)(((v(l - lEvil ). 

Applying Lemma 2.1 and (2.7), we see that the theorem will be proved if we 
can show 

J J 

(2.1 1) ( iV, v) < ( J + W@~ _(J1) /2) (TiEj_ Iv , Ej_ I v) 
i=I i=1 

and 
J J 

(2.12) 1(Tiv, v) < 2(1 + 2j(j _ 1)/2) (TiEi_lv, Ei_lv). 

By (2.3), 
i-l 

(2. 13) (Tiv v) = (Tiv 5 Ej_jv) + E(Tiv, TjEj_lv). 
j=1 

Using the bound for the operators { Tf} and the Schwarz inequality gives 

(Tiv, v) < (Tiv, v)1/2 (TjE_ Iv, Ej_ v) /2 

+ w(Tiv , v) I E(TjEj_1 v, E.v) /2 

j=1 

(2.14) < (Tiv, v) 1/2 ETiEi_l 1 Ej V) 1/2 

+ (~~.i Euv) 1/2) 

+ 0 9 v (i- E ( Tj Ej_ v, Ej_ v)) 

Thus, by first eliminating (Tiv, v) on the right-hand side and then applying 
the Schwarz inequality, (2.14) can be bounded as follows: 

(Tiv, v) < ((TEijlv, Ei1lv)l/2 

)1/2) 2 

(2.15) + CVTjT E11V) 

< (1 + w02(i - 1)) E(T1E1 1v, E11v). 
j=1 

Alternatively, 

(2.16) (Tiv, v) < 2 ((TiEj_ v, Ejv) + co2(i - 1) (E(TjEj_v, Ej_v))) 
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Summing (2.15) and (2.16) over i proves (2.11) and (2.12). This completes 
the proof of the theorem. E 

Remark 2.1. Note that (2.9) provides a better estimate when, for example, c > 
1. In contrast, (2.10) provides a better estimate when w is small and j> 2. In 
fact, the form of estimate (2. 10) suggests that it may be possible to accelerate the 
convergence of the algorithms by scaling the Ti's. Assume that we are given a 
sequence of symmetric positive semidefinite operators Ti i = 1, ... , J ,with 
norm bounded by w and satisfying 

J 

1v 12H< ?Co (Tiv, v) for all v E F. 
i= 1 

Defining Ti = a Ti and applying (2.10) gives that the reduction corresponding 
to the algorithm with { Ti} is bounded, for example, by 

y = a(2 - wa) 

2CO(1 + a 2wo2J(J - 1)/2) 

Taking a = 1 /(w J(J- 1)) gives that the reduction rate is bounded, for 
example, by 

Y~~~~~ 2'= 1-_~ 
3COwJ 

Remark 2.2. One important application of the theorems of this section is the 
case where the operator Ti = Pi, the orthogonal projection onto a subspace 
%$ of F". In this case, the proof of (2.7) reduces to the construction of a 
decomposition of v E %"r of the form v = Jl Vi with vi E %' satisfying 

J 
(2.17) v 112 < C0o HvH12. 

i=1 

This was observed in [15]. In fact, if (2.17) holds, then 
J J 

gv11H = E(V, Vi) = 
J(PiV, Vi) 

i=l i=l 

J 
1 /2 J 1 /2 J 

< E TlVihe .2)12 (Tiv f v) < Cov(Tiv v). 

Theorem 2.1 provides good bounds for a number of applications. However, 
there is an important class of applications (see ?4) where {T} satisfies an 
interaction property. To describe this property, we first define 

0 if T.TJ= 0 
K.j = 1 1 otherwise. 

We consider a set I0 C [1, ... , J] and define J0 to be the number of integers 
in I0 and 

No = max E Kij 
jv ivI0 
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It can happen that the numbers J0 and No remain small even when J becomes 
large. Basically, the indices in I0 correspond to Ti 's which interact with many 
of the other Ti 's. The remaining Ti's interact with at most No of the Ti's 
with indices not in I0. We shall also let 10 denote the integers in [1, ..., J] 
which are not in I0. Under these assumptions, we have the following theorem. 

Theorem 2.2. Let No and J0 be defined as above. If (2.7) holds, then 

2jEv12 < Y 11Vl2 

for 
2 - co 1 

O2-w0 3CO(l + + No)K0) 
where Ko = max(J0, NO). 

Before proving the theorem, we prove the following lemma. 

Lemma 2.2. Let J0 and No be defined as above and uj, vi E X for i = 

1, ..., J. If S1 is a subset of IO x IO, then 

(2.18) ((E (TiuiS Tjj)) < CD No Z(Tiui, u) E(Tjvj vj). 
(i, i)ESI iEIo jEIo 

If S2 is a subset of IO x IO, then 
/~~~~~~~~ 

(2.19) (E (Tjuj, Tjvj) < co JO (T uiP)(jy 
(i, j )E S2 iEIo jEIo 

Finally, if S3 is a subset of IO x 1O, then 

(2.20) (ZE (Tiui Tjvj)) ? w2JoNoZ(Tiu, u1)Z(Tjvj, vj). 
(i, j) E S3 iEIo jEIO 

Proof. The bound on the { T'} implies that 

WK1J(1U1, 1/2 1/2 J(Tjuj 5 Tjvj)l < COKij(Tiui 5 ud ll(Tjvj, vj) 12 

Consequently, 

(E (u T ?j) Z < X (TiUi, Ui) ZKij(TjVj, Vj)1/2 
(1, j)ESl noit iI 

< )2NoE(Tiui ui)ZEKij(Tj Vj Vj) 

iEIO iEo jETo 

< 0j No j,(Tiui, 5i ud1(Tjvj, 5 y). 

iEI0 jEI0 

This proves (2.18). The proof of (2.19) is similar. 
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Let Io(i) denote the possibly empty set of indices i E I. such that (i, E) e 
S3. To prove (2.20), 

)2 2 
(Tiui, Tjvj) = | j u i ? Tjvj 

(ijS3 )iEIO JEIO(i) j] 
2 

(2.21) <JjZITjII2 E Tjv1 

iEIo jEI0(i) 

2 

< (0)> E(uiui | E Tj Vjl 
iEIO jEIO(i) 

We clearly have that for any i, IO(i) Io, and hence (2.18) implies 

2 

(2.22) Tj Tvj <?wNOZ(Tjvj,vj). 
jEIO(i) jE1o 

Combining (2.21) and (2.22) proves (2.20). o 

Proof of Theorem 2.2. As in the proof of Theorem 2.1 (compare with (2.1 1)), 
it suffices to prove that for v E % 

J J 

(2.23) Z(Tiv, v) < 3(1 + (J NO)KO) (TiEi_ 1 v, Ei_ 1 v). 
i=l i=l 

Using (2.13) and partitioning the (i, j) indices appearing in the double sum 
into sets S2 and S3 yield 

(Tiv, v) = (Tiv, Ej_1v) + Z(Ti;v, TjEj_Iv) 
iEIo iEIo iEIo j=1 

Z(Tiv, Ei_lv) + E (Tiv, TjEj1lv) 
iEIo (i, j)ES2 

+ E (Tiv, TEj_lv), 
(i, j)ES3 

where 

S2C I0 x I0 and S3 Io x IO. 
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Thus, by the arithmetic-geometric mean inequality and Lemma 2.2, 

(E(Tiv, v) < 3 1(Tiv, v) (TiEi_lv, Ei1v) 
iEIO )iEIo iEIO 

+ [ E (Tiv, TjEj_lv)] 
LU, i) ES2 +~~~~~~~~~~~~~~~ 

+ 1: (Tiv, TjEj_lv)] 
(2.24) (i,j)S3 

< 3j(Tjv, V) jE(TjEi-Iv, Ej-Iv) 
iEIO iEIO 

+ W2J> Z(T1Ejiv, Eiv ) 
iEIO 

+2JoNNo Z( ;E1VEi V)} 
iEIO 

It follows from (2.24) that 

S (Tiv, v) < 3 (TiEi_lv, E11v) + J) E(77E1 v E11v) 
iEI0 iEIO iEIO 

(2.25) 

+W2JoNo 
E(T1Ej 

Vv, E V) 
iE7) 

Similarly, 

(Tiv, v) < 3 ,(T1EjIv, E11v) + W2N 2(TiEi_lv, Ej_1v) 

(2.26) Eiv iE i)} 

+ c)2 JONO E( 
TjEj V 

V, Eil V ) 

iEIO 

Combining (2.25) with (2.26) proves (2.23). This completes the proof of the 
theorem. E 

Remark 2.3. Theorem 2.2 suggests that a smaller Ko results in a better conver- 
gence estimate. Since the numbers JO and No merely characterize the interac- 
tion between T1 's, i = 1, , J, one might think that less interaction yields 
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a better convergence rate. However, less interaction between subdomains may 
result in a larger constant C0 in (2.7). 

3. ADDITIVE PRECONDITIONING ALGORITHMS 

Section 2 developed a theory which related the constant C0 in (2.7) to the 
norms of products of the form (1.3). In this section, we shall provide converse 
estimates, i.e., assuming that the norms of the product is bounded by some 
constant y < 1, we shall give a simple bound for C0. We will then discuss the 
implications of these results to a natural additive variant of Algorithm 1. 

Theorem 3.1. Assume that the norm of the operators {T} are bounded by a 
positive constant X less than 2 and there exists a constant y E (0, 1) such that 

IIEvH112 < yIIvI2 for all v E F. 

Then (2.7) holds with CO < 4(1 - y)-1(2- - . 

Proof. Let v E 7 . We first note that by Lemma 2. 1, 

J 

(2- c) Z(TiEi Iv, EI-v) 
i= 1 

< IIV - 2_IIEv 112 = 2(v, (I - E)v) - 1 (I - E)vH2 

(3.1) < 2(v, (I - E)v) = 2E(v, TjE_ Iv) 
i= 1 

* 2 (E(Tiv 5 v)) E(TiEi_ Iv Ei_v)) 

Hence, 

(A 1/ 
/ 

LE(7TiEj v, E iv)) < 2(2 - w)- ZE(Tiv, v)) 

By (3.1) and the definition of y, 

(1 - y) IV 112 < IV 112 _ IIEv 12 

?2Z(v v)1/2 (?JE ))1/2 * 2 (E(Tiv 5 v)) (E (TEi_ I v, Ei I v)) 

? 4(2-wo) 1 (7T7v, v). 
i=1 

This completes the proof of the theorem. o 

Theorem 3.1 provides a lower bound for the smallest eigenvalue of the oper- 
ator E Ti. To estimate rates of convergence for the additive preconditioned 
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algorithms to be described, we must also bound the largest eigenvalue. We 
obviously have that 

Z(Tiv, v) < ? oj IV H12. 
i= 1 

A somewhat better bound may be derived when one assumes the interaction 
property of ?2. Such a result is given by the following proposition. 

Proposition 3.1. Let No and JO be as in ?2. Assume that the norms of the 
operators T1 are bounded by a positive constant a) (which may be greater than 
or equal to 2). Then 

(3.2) ?TiV) < )(J +N I)V v for all v E F. 

Proof. Note that 

(Ti V 
V) 

< I~TVs 11Vl e1 

Define the sets 
SI = Io X Io ' S2 = IO X IO,5 

4 Q 
S3 = IO X Ton5 S4 = IO X IO' 

Then 
2 

Z7T7v = E (Tiv,1,v)+ (Tiv, Tjv) 
i= 1 (i, j)ES (i, j)ES2 

+ E (TivTjv)+ E (TivTjv). 
(i, j)ES3 (i, j)ES4 

Applying Lemma 2.2 gives 
2 

Z|Tiv N< oN0 Z(Tiv, v) + wJo (Tiv, vv) 
i=1 10 ~~~~~~~10 21/ 

+2 NJ E(ZTi7 v v) 1 (Z(Tiv 5 V)/ 

< wo(Jo + No) (Tiev, v). 
i=1 

The proposition follows by combining the above inequalities. 5 

In the remainder of this section, we apply the above results to an additive 
variant of the algorithm described in the Introduction. We include this dis- 
cussion for completeness, since the algorithms are so closely related to those 
discussed earlier. We note that the additive algorithms may have an advantage 
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when used on a computer with a parallel architecture, since the terms can al- 
ways be evaluated concurrently. However, compared with the corresponding 
multiplicative variants, these algorithms often produce a somewhat slower rate 
of convergence in practice, mainly because of a larger upper eigenvalue (see ?6). 

The additive algorithms are defined in terms of a preconditioner B for the 
operator A in (1.2). Specifically, we set 

J 

(3.3) B=RiQi 
1=1 

and note that 
J 

BA = ZTi, 
i= 1 

where Ti = RiAiPi as defined in the Introduction. Effective algorithms for the 
solution of (1.1) are obtained by iterative methods applied to the preconditioned 
equations 

BAu = Bf. 

Clearly, BA is a symmetric operator in the inner product (., *)-A(., *), and 
one can apply, for example, the conjugate gradient iterative procedure. Alter- 
natively, one could use the simplest linear iterative scheme as in the following 
algorithm. 

Algorithm 2. Given u1 E 2, define 

(3.4) u+ = u + TB(f-Au). 

In the above algorithm, z is a positive iteration parameter. The sequence 
of iterates converges to u provided that z times the maximum eigenvalue of 
BA is less than two. The optimal rate of convergence is obtained by taking z = 
2/(AO+Al ) and results in a reduction of (K(BA)- 1)/(K(BA)+ 1) per iteration. 
Here, AO and A, denote respectively the smallest and largest eigenvalue of BA, 
and K(BA) = Al /IO is the condition number. The results in this section can 
be used to provide bounds for K(BA) = K(Zi Ti). 

From (3.4), it is clear that the correction due to any subspace 7' in the 
additive algorithm is computed by applying T1 to the original error u - u = 
A I(f - Au ) and adding the resulting contributions. In contrast, the product 
algorithm (Algorithm 1) involves applying T1 consecutively to the latest error. 

4. OVERLAPPING DOMAIN DECOMPOSITION METHODS 

In this section, the abstract results developed earlier will be applied to ex- 
amples where the subspaces have been defined by overlapping domain decom- 
position. We shall consider both the continuous case as well as the case of 
finite element approximation. The results of ?2 show that in order to bound the 
rate of convergence for the product algorithms, it suffices to prove inequality 
(2.7) and apply Theorem 2.1 or 2.2. For the applications of this section, the 
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main part of the proof of (2.7) was given in [13]. We first consider the case of 
overlapping subdomains of quasi-uniform size d without the use of a "coarse" 
problem. The convergence rate for this method deteriorates as the number of 
subdomains increases. Finally, to develop a method with a uniform rate of 
convergence (not depending upon the mesh size or the number of subdomains), 
the sequence of subspaces is augmented with a coarse subspace, i.e., a subspace 
of functions on a mesh of size d. 

We will consider the following elliptic boundary value problem. For sim- 
plicity, we shall restrict to problems in two-dimensional Euclidean space R2 
Extensions to higher dimensions are straightforward. Let Q be a polygonal 
domain in R2 and consider the problem 

2 

(4.1 ) - SE i(aijO u) + au = f in Q, 
i,j=1 

u = O on OQ. 

Here, A1 = , and we assume that the matrix (aij)2 2 is symmetric for each 
x E Q and uniformly positive definite. We further assume that the coefficients 
of (aij)2.2 and a are continuously differentiable and that a > 0. The solution 
u of (4.1) is in Ho (Q) (the functions defined on Q which vanish on OQ in 
the appropriate sense and together with their first derivatives are L2 integrable) 
and satisfies 

(4.2) A(u, X) = (f, X)0 for all X EH(Q) 

Here, A(., .) denotes the bilinear form associated with the operator in (4.1) 
defined by 

A(u, v)= E faijju0jv dx + auv dx 

2 and (., .)o denotes the L -inner product on Q. 
We will consider overlapping domain decomposition applied to both the con- 

tinuous problem (i.e., 7 = Ho (Q) ) and its corresponding finite element ap- 
proximations. Most of our development will be directed to the finite element 
exposition, the exposition for the continuous application is similar and will be 
discussed in accompanying remarks. The continuous case is only of theoret- 
ical interest, since actual computer implementation requires the use of finite- 
dimensional approximation spaces. 

We first define the finite element approximation scheme. For simplicity of 
presentation, we use the simplest finite element spaces. Extensions to more 
complex elements are possible. Assume that Q has been triangulated, Q = 

Ui Ti, where the triangles {Ti} are of quasi-uniform size h with h E (O, 1]. 
By this we mean that there are constants CO, C1 not depending on h such 
that each triangle ri is contained in (respectively, contains) a ball of radius C1 h 
(respectively Coh ). The finite element space 7 is defined to be the functions 
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which are continuous on Q, piecewise linear with respect to the triangulation 
{ zi}, and vanish on OQ. The finite element approximation to the solution of 
(4.1) is the function U E 7 satisfying 

(4.3) A(U, X) = (f, x)0 for all x E F. 

Estimates for the error between u and U are well known (cf. [1], [2], [12]). 
We shall be concerned with iterative processes of the form of Algorithm 1 for 
the computation of U. 

To define the overlapping domain decomposition method, we start by assum- 
ing that we are given a set of overlapping subdomains {fQi}IJ= whose boundaries 
align with the mesh triangulation defining F". Associated with these subdo- 
mains, we assume that there is a partition of unity EJp1 = 1 defined on Q 
satisfying 

(4.4) supp Pi C Qi U A, 

(4.5) 11Pi1100'Q < C, 

(4.6) 11,7pilloo ,2 < Cd 1 1, 

for i = 1, ... , J . Here, l H iloo, D denotes the L00 norm of a function defined on 
a domain D. One way of defining the subdomains and the associated partition 
is by starting with disjoint open sets {Qf }i with ? = J X and {f 0}=J 
quasi-uniform of size d. The subdomain Qi is defined to be a mesh subdomain 
containing Q? with the distance from 0Q0 n Q to Q? greater than or equal 
to Cd for some prescribed constant C. The construction of functions pi 
satisfying (4.4)-(4.6) is then straightforward. 

Remark 4.1. To define the overlapping domain decomposition method for the 
continuous problem, we start by partitioning Q into a sequence of overlap- 
ping subdomains Q = U1 QJ . We assume that these subdomains have 
Lipschitz continuous boundaries and that there is a corresponding partition 
of unity EJ=1 P1 = 1 satisfying (4.4)-(4.6). As above, the subdomains can be 
defined by starting with disjoint open sets {Q?} and expanding by Cd. 

In either case, the subspace i is defined by 

Gg?= {f | I E 2 5 SUPP ( C Oil 

The first product method associated with these subspaces is when Ti of Algo- 
rithm 1 is taken to be Pi, the elliptic projection into 2. For the two-domain 
case, this is the classical Schwarz method (cf. [3], [15], [18]). The inner prod- 
uct (., .) used in ?2 is defined by (u, v) _ A(u, v) for all U, v E F. By 
Remark 2.2, estimate (2.7) for this case will follow from the existence of a 
decomposition v = EJ Vi , with vi E 7/' satisfying 

J 

(4.7) ZA(vi, vi) < COA(v, v). 
i= 1 
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The decomposition used in [13], v = EJ=1 Ih(piv), where Ih denotes the nodal 
2 interpolation operator onto 7, satisfies (4.7) with CO = Cd . In fact (cf. 

[13]), using (4.4)-(4.6), one shows that 
J 

(4.8) ZA(Ih(piv) , Ih(piv)) < cad 21v1H2 + A(v, v)} for all v E F. 
i= 1 

In the continuous case, one simply takes Ih to be the identity. We now give 
the following theorem. 

Theorem 4.1. Let ni denote the number of subdomains Q with f ln Qi 54 0 
and assume that n1 < n, i = 1, ..., J. In addition, assume that (4.4)-(4.6) 
hold. Then 

2 ( d2 ) V2 1HEv11 ? (i - Cn 2 for al/v E ,/ 

where the constant C does not depend on d or h. This holds for overlapping 
domain decomposition in the continuous as well as the finite element application. 
Proof. We have already proved estimate (2.7). To apply Theorem 2.2, we need 
only identify No and IO. We set IO = 0. Note that Kij is nonzero only if 
Qi n Qj #h 0. Consequently, we can take No = n. This completes the proof of 
the theorem. n 
Remark 4.2. The convergence estimate for the product algorithm in the case of 
two subdomains was given in [15]. It was also demonstrated in [15] that the 
product algorithm described above gives rise to the error propagation matrix 
associated with the classical Schwarz overlapping method [18]. For the case of 
more than two subdomains, convergence was proved in [15] but no estimate 
of the rate was given. Weak estimates were given in [17], [19]. Theorem 4.1 
provides new estimates in the case of more than two projectors. 

Remark 4.3. It is possible to view point-Gauss-Seidel iteration as a product 
iteration of the above form. For each node xm of the triangulation, we define 
the subdomain Qm to be the union of the triangles z1 E {Zk } which have xm as 
a vertex. In this case, the subspaces 7$ are one-dimensional and the projectors 
Pi are trivial to compute. It is then easy to see that the product algorithms with 
R= A- 1 correspond to the Gauss-Seidel method. Inequality (2.7) is a direct 
consequence of inverse properties of X, since the decomposition v = E vi is 
unique and satisfies 

ZA(vi, vi) < CEv(xi)2 < Ch2 A(v, v). 
i i 

Thus, Theorem 2.2 provides an alternative proof of the convergence rate of 
Gauss-Seidel iteration. 

In the finite element case, this algorithm requires the computation of func- 
tions ui E 7'? satisfying 

(4.9) A(ui, Ao) = Gi((o) for all E e 
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for appropriate linear functionals Gi. To avoid solving systems of the form 
(4.9), we introduce Ti by preconditioning. Specifically, let Ri be a scaled 
preconditioner for Ai , i.e., R A1 is a symmetric positive definite operator on 

" satisfying 

(4.10) CRA(w, w) < A(RiAiw, w) < A(w, w) for all w E 7/. 

Define Ti = RiAiPi. Then (4.7) implies 
J 

A(w, w) < COE A(Piw, w) 

(4.11) i=1 

< CO/CREA(Tiw,w) forallwE X, 
i=1 

i.e., (2.7) holds for {Ti}. The development of preconditioners for (4.9) has 
been subject to intensive research [4]-[9], [11], [13], [14], etc. Computational 
results for this algorithm with multigrid V-cycle preconditioning are given in 
?5. Combining (4.1 1) and Theorem 2.2 implies the following theorem. 

Theorem 4.2. Assume that the hypotheses for Theorem 4.1 hold. Define Ti = 

RiAiPi for i = 1, ... , J and assume that Ri satisfies (4.10) with CR inde- 
pendent of d and h. Then 

2 ( d IV 12 ItEvtII ? (i - ~2 t~t for al/v E ,/ 

where the constant C does not depend on d or h. This holds for overlapping 
domain decomposition in the continuous as well as the finite element application. 

To obtain algorithms which converge with rates that are independent of d, 
one can add a coarse subspace. Let / be a finite element subspace of 7 
defined from a quasi-uniform triangulation of Q of size d. Let Q denote the 
L 2() orthogonal projection onto %. Then, for v E 7, 

J J 

v = Qv + E Ih(Pi(v - Qv)) = Zvi 
i=1 i=O 

is a decomposition of v into {J7iJ=0 which, by (4.8), satisfies 
J 

ZA(vi, vi) < C{A(Qv, Qv) + d 21v - QvH11 + A(v - Qv, v - Qv)}. 
i=O 

It is known that (cf. [20]) 

11v - QvJJo < CdJlv I1 , 11QvH11 < C11v 11 

which implies 
J 

(4.12) EA(vi, vi) < CA(v, v), 
i=o 
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i.e., (2.7) holds with CO independent of d. Inequality (4.12) has been given in 
[14]. We can apply Theorem 2.2 to this formulation. In this case, IO contains 
the one integer corresponding to the coarse subdomain. We have the following 
theorem. 

Theorem 4.3. Assume that the hypotheses for Theorem 4.2 hold. For the algo- 
rithm which includes a coarse grid term j = 0, we have 

JJEv 11 < y 1vt 11 for all v E /, 

where y is a constant which is less than one and does not depend on d or h. 
This holds for overlapping domain decomposition in the continuous as well as the 
finite element application. 

5. NUMERICAL RESULTS 

In this section, we provide the results of numerical examples illustrating the 
theory developed in earlier sections. We shall consider the model problem 

-Au = f in Q, 

(5.1) U=O onOQ, 

where A denotes the Laplacian and Q is the unit square [O, 1 ] x [O, 1 ]. Prob- 
lem (5.1) is discretized by the finite element method. Specifically, the domain 
Q is first partitioned into m x m square subdomains of side length 1 /m . Each 
smaller square is then divided into two triangles by one of the diagonals (e.g., 
the diagonal which goes from the bottom left to the upper right-hand corners of 
the square). The approximation space 7 is defined to be the set of functions 
which are continuous on Q, piecewise linear with respect to the triangulation, 
and vanish on OQ. We seek the Galerkin solution U E 7 satisfying 

(5.2) D(U, q) = ( f, q)0 for all X E F. 

We shall consider a number of overlapping algorithms for the solution of 
the discrete equations determining U. The first algorithm uses overlapping 
subdomains defined in terms of strips. The remaining algorithms are based on 
overlapping subdomains Qi of quasi-uniform size as described in ?4. 

To define the strip overlapping subspaces, we first define j - 1 subregions 

Qk= [(k - 1)d, (k + 1)d] for k = 1, ..., j - 1, where d = 1/j . We assume 
that the mesh aligns with the subdomain boundaries, i.e., j divides m, and set 

(1) k = {+ E X I SUPP X C Qk1 e 

(2) Ak: '/k ' k by Ak V = ' where ' is the unique function in '/k 

satisfying 
(T 0) = D(V, 0) for all 0 E 7k. 

Note that here we identify k'k with 'ok . We define A as above but with 'ok 
replaced by F. Note that Problem (5.2) can be rewritten as AU = F, where 
F is the L 2-projection of f into 2 . For this example, we shall use Rk = A1 

and hence Tk= Pk . 
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TABLE 5.1 
The values of y for overlapping strips 

Mr= 1/h y(j=4) y(]=8) y(j= 16) y(j=32) 
16 .21 .59 .86 
32 .21 .59 .86 . 
64 .21 .59 .86 .96 
128 .21 .59 .86 .96 

Table 5.1 gives the numerically computed value for the norm-squared reduc- 
tion rate for Algorithm 1 with T7 defined in terms of overlapping strip domain 
decomposition as a function of j and m. Note that the norm-squared re- 
duction rate (the minimal value y satisfying (2.8)) is the largest eigenvalue of 
the symmetric iteration operator E*E. Here, E* is the adjoint of E with 
respect to the inner product A(., *) and is computed by reversing the order of 
the factors in (2.1). 

It is not difficult to prove that the inequality (2.7) is satisfied with C0 < Cj2, 
and thus Theorem 2.1 guarantees that y < (1 - C/j2). We note that the expected 
asymptotic behavior is seen comparing the k = 16 with the k = 32 results 
where 1 - y is reduced by almost a factor of 4. The values of y in Table 5.1 
do not appear to depend upon h = 1/m . 

For the remaining examples, we consider the above problem and discretiza- 
tion but define overlapping subdomains of quasi-uniform size. More precisely, 
let d = 1/j and for each i, l = 1, ..., j- 1 define the subdomain QOH = 
[(i - 1)d, (i + 1)d] x [(I - 1)d, (I + 1)d]. We again assume that j divides m 
and define subspaces 

= E{ e I supp q Cil 

As seen in ?4, (2.7) holds for the sequence of spaces {% l I i, I = 1, ... , j - 1 } 
with constant C0 < Cj2 . As discussed in ?4, the dependence on j can be 
removed by using a coarse space, e.g., the space % defined to be the continuous 
piecewise linear functions on the mesh of size d which vanish on OQ. We 
assume that the triangles of this coarse grid mesh are defined so that they align 
with those of Y and hence % C Y. 

We first consider the product algorithm using the coarse subspace % and 
the (j - 1)2 overlapping subdomains of quasi-uniform size described above. 
For this example, we again use Rk = Ak 1 and hence Tk = Pk . This algo- 
rithm converges in relatively few iterations but requires the exact solution of 
the subspace problems on each step of the iteration. The computed values of 
the reduction rates ( v/ ) for Algorithm 1 were less than .2 for combinations of 
m = 16, 32, 64, 128 and j = 4, 8, 16 (see Table 5.2). For comparison, we 
computed the condition numbers for the corresponding additive algorithm. For 
the same values of m and j, the additive algorithms gave condition numbers 
of at most 5.3, which corresponds to a reduction of 0.68 for Algorithm 2. 
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TABLE 5.2 

Reduction rates for the (K - 1)2 overlapping domain decompo- 
sition algorithm 

m = 1/h a: K = 4 X: K = 8 Fly: K = 16 
16 .17(.53) _ _ 
32 .17(.52) .17(.83) _ 
64 .17(.52) .2(.82) .2(.95) 
128 .17(.52) .2(.82) .2(.95) 

To illustrate the improvement resulting from including the coarse problem, 
Table 5.2 reports values for v/y for the overlapping method without the coarse 
problem. These are the values given in parentheses and are always larger than 
the reduction rates for the algorithm with the coarse grid subspace. These results 
clearly indicate that the use of a coarse grid problem results in a significant 
improvement in the rate of convergence. 

In almost all realistic applications, the direct solution of subproblems is much 
more expensive than the evaluation of a suitable preconditioner. To illustrate 
the effect on the convergence rate of the Algorithm 1, we next consider the pre- 
vious example but with the direct solves on the subspaces replaced by multigrid 
preconditioners. Specifically, we employ the V-cycle multigrid algorithm (cf. 
[5]) using one pre and post Jacobi smoothing on each grid level. This leads to 
a preconditioning operator Ril: Y', 4-* " which satisfies 

(5.3) 0.4A(v, v) < A(Rd1Adv , V) < A(v, v) for all V E Yj7. 

The constant 0.4 above was computed numerically and holds for all of the sub- 
space problems which are required for this application, including % . For this 
example, the reduction rates for the preconditioned product algorithm (Algo- 
rithm 1) were all between .63 and .50 for combinations of m = 16, 32, 64, 128 
and k = 4, 8, 16 (see Figure 5.3). Again, we computed condition numbers for 
the corresponding additive algorithms and found them to be bounded by 9.8 
for the same range of k and m. This corresponds to a reduction of .81 for 
Algorithm 2 with an appropriate choice of iteration parameter T. Finally, we 
computed the reduction rates for the product algorithm with preconditioning 
but without the coarse grid solve (the reductions are the numbers in parentheses 
in Table 5.3). As in the case of direct solves, the algorithm without the coarse 
problem shows a significant loss of efficiency. 

In all of the above runs, Algorithm 1 with direct solves replaced by multigrid 
preconditioning would require, at most, four times as many iterations as the 
direct solve version. On the other hand, our coding of the simple multigrid 
V-cycle algorithm actually ran more than four times as fast as the correspond- 
ing direct (FFT-based) solving version. Hence, even in the special case where 
fast algorithms are available for the subproblems, the efficient multigrid pre- 
conditioning remains competitive. In more complex problems where fast direct 
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TABLE 5.3 
Reduction rates for the domain decomposition with preconditioning 

m = 1/h |/y: K = 4 |/-y: K = 8 |1yX: K = 16 
16 .50(.62) - 

32 .56(.62) .52(.87) _ 
64 .56(.62) .55(.87) .63(.96) 
128 .57(.62) .57(.87) .63(.96) 

methods are not available, the product algorithms using preconditioning will 
show a significant improvement in computational efficiency. 

It is interesting to note that in the above two examples, the product algorithm 
converges somewhat faster than the corresponding additive algorithm. On the 
other hand, the additive algorithms will generally be somewhat easier to imple- 
ment on a parallel machine. This leads one to the question of when an additive 
algorithm gives rise to a more efficient algorithm even in a parallel environment. 
Note that if the subspace problems are relatively large and reasonably paralleliz- 
able on the given architecture, then little computational gain will be obtained 
from executing them concurrently. This seems to suggest that the additive al- 
gorithm will be more effective than the product only if the computer has a very 
large number of processors. 
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